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A novel facial expression recognition algorithm based on discriminant neighborhood preserving nonnegative tensor factorization
(DNPNTF) and extreme learning machine (ELM) is proposed. A discriminant constraint is adopted according to the manifold
learning and graph embedding theory. The constraint is useful to exploit the spatial neighborhood structure and the prior defined
discriminant properties. The obtained parts-based representations by our algorithm vary smoothly along the geodesics of the data
manifold and have good discriminant property. To guarantee the convergence, the project gradientmethod is used for optimization.
Then features extracted byDNPNTF are fed into ELMwhich is a trainingmethod for the single hidden layer feed-forward networks
(SLFNs). Experimental results on JAFFE database and Cohn-Kanade database demonstrate that our proposed algorithm could
extract effective features and have good performance in facial expression recognition.

1. Introduction

Facial expression recognition plays an important role in
human-computer interaction, and 55% information is trans-
ferred by facial expression in face-to-face human com-
munication [1]. Although many methods were proposed,
recognizing facial expression is still challenging due to the
complex, variable, and subtle facial expressions.

One of the effective methods for facial expression recog-
nition is the subspace-based algorithm [2–5]. It aims to
project the samples into a lower dimensional space which
preserves the needed information and discards the redundant
information. There are many widely used subspace-based
algorithms, for example, principle component analysis (PCA)
[2], linear discriminant analysis (LDA) [3], neighborhood
preserving embedding (NPE) [4], locality-preserving projec-
tion (LPP) [6], and singular value decomposition (SVD) [5],
and so forth.

Recently, the nonnegative matrix factorization (NMF)
was introduced into facial expression recognition [7]. NMF
decomposes the face samples into two nonnegative parts: the

basis images and the corresponding weights. As many data
in bases and weights were degenerated too close to zero,
NMF derived the parts-based sparse representations. For
facial expression recognition, the localized subtle features,
such as the corners ofmouth, upward or downward eyebrows,
and change of eyes, are critical for the recognition perfor-
mance. Since NMF yields the parts-based representations, it
outperforms the subspace-based models. To further improve
NMF, several variants have been presented by introducing
different constraints to the objective function. Li et al. put
forward a local NMF (LNMF) by adding a local constraint
to the basis images [8], to learn a localized, parts-based
representation. Hoyer gave a sparse constraint NMF (SNMF)
by incorporating sparseness constraint into both the bases
and the weights [9]. Cai et al. developed a graph constraint
NMF (GNMF) by adding a graph preserving constraint
to the weights [10]. Zafeiriou et al. used the discriminant
NMF (DNMF) for frontal face verification [11]. Wang et al.
extended NMF to PNMF with a PCA constraint and FNMF
with a Fisher constraint [12].
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For facial expression recognition, NMF and its variants
vectorize the samples before factorization, which may lose
the local geometric structures. However, the spatial neigh-
borhood relationships within pixels are critical for image
representation, understanding, and recognition [13]. Another
drawback of NMF is that it could not generate a unique
decomposition result. Welling and Weber developed a pos-
itive tensor factorization (PTF) algorithm, which handled
images as 2D matrices directly [14]. Shashua and Hazan
proposed the nonnegative tensor factorization (NTF) which
implemented the factorization in the rank-one tensor space
[15]. The factorization in the tensor space could preserve
the local structures and guarantee the uniqueness of the
decomposition.

On the other hand, the choice of classifier plays an impor-
tant role for recognition. For facial expression recognition,
nearest neighbor (NN) and support vector machine (SVM)
are the commonly used methods [16]. The sparse repre-
sentation classifier (SRC) was adopted in [17]. Recently,
the extreme learning machine (ELM) was proposed for
classificationwhich is a trainingmethod for the single hidden
layer feed-forward networks (SLFNs) [18]. The conventional
methods need long time to converge or may lose the general-
ization property due to overfitting. However, ELM converges
fast and provides good generalization performance. For ELM,
the input weights and biases are randomly assigned, and the
output weights can be simply calculated by the generalized
inverse of the hidden layer output matrix. Therefore it con-
verges extremely fast and obtains an excellent generalization
capability. Many variants of ELM were proposed for different
applications [19–26], including the Kernel-based ELM [21]
and the incremental ELM (I-ELM) [23], which lead to the
state-of-the-art results in different applications.

In this paper, we propose a novel facial expression rec-
ognition algorithm based on discriminant neighborhood
preserving nonnegative tensor factorization (DNPNTF) and
ELM. It works well in the rank-one tensor space. The simple
ELM is adopted to testify its effectiveness for facial expression
recognition [18]. Our algorithm is composed of two stages:
feature extraction and classification. Firstly, to extract the
discriminant features, a neighborhood preserving constraint
form of NTF is used. The constraint is derived according
to the manifold learning and graph embedding theory [27–
29]. Since the columns of the weighting matrix have a one-
to-one correspondence with the columns of the original
sample, the discriminant constraint is added to the weighting
matrix. With the neighborhood preserving constraint, the
obtained parts-based representations vary smoothly along
the geodesics of the datamanifold and aremore discriminant.
Secondly, the discriminant features extracted by DNPNTF
are fed into ELM classifier to conduct the recognition task.

The rest of this paper is organized as follows. The math-
ematical notations are given in Section 2. In Section 3, we give
the detailed analysis about DNPNTF and its optimization
procedure. ELM is introduced in Section 4, and the exper-
iments are given in Section 5. Finally, the conclusions are
drawn in Section 6.

2. Basic Algebra and Notations

In this paper, a tensor is represented as A ∈ R𝑚1×𝑚2×⋅⋅⋅×𝑚𝑛 ,
whose order is 𝑛. The element of 𝐴 is denoted by A
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Definition 1 (inner product and tensor product [30]). The
inner product of two tensors A,B ∈ R𝑚1×𝑚2×⋅⋅⋅×𝑚𝑛 is defined
as
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The tensor product of two tensors A ∈ R𝑚1×𝑚2×⋅⋅⋅×𝑚𝑛 and
B ∈ R𝑝1×𝑝2×⋅⋅⋅×𝑝𝑞 is
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Definition 2 (rank-one tensor [30]). A 𝑛th-order tensor A ∈

R𝑚1×𝑚2×⋅⋅⋅×𝑚𝑛 could be represented as a tensor product of
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A = u1 ⊗ u2 ⊗ ⋅ ⋅ ⋅ ⊗ u𝑛. (3)

Here A is called rank-one tensor, and A
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Definition 3 (mode product [30]). Themode 𝑘 product ofA ∈

R𝑚1×𝑚2×⋅⋅⋅×𝑚𝑛 and U ∈ R𝑚𝑘×𝑚
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where C
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3. The DNPNTF Algorithm

In this section, we give a detailed description about the
proposed DNPNTF algorithm. Instead of converting into
vectors, it processes the samples in rank-one tensor space.
The objective function of NTF is adopted, which could
learn the parts-based representation and have the sparse
property. To discover the spatial local geometric structure
and the discriminant class-based information, a constraint is
added in the objective function according to the manifold
learning and graph embedding analysis. To guarantee the
convergence, the project gradient method is used.

3.1. The Analysis of DNPNTF. Given a𝑚×𝑁 image database
X, it contains𝑁 sample imagesX = [x
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database is organized as a 3rd-order tensor A ∈ R𝑚1×𝑚2×𝑁,
which is overlapped by {x
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where u
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∈ R𝑚1 , k
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By minimizing (5), the bases {u
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low-dimensional parts-based representation.
To incorporate more properties into NTF, different con-

straints could be added into the objective function. The
constraint form of objective function is
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where 𝑈 = [u
1
, u
2
, . . . , u

𝑅
] ∈ R𝑚1×𝑅, 𝑉 = [k

1
, k
2
, . . . , k

𝑅
] ∈

R𝑚2×𝑅, 𝑍 = [z
1
, z
2
, . . . , z

𝑅
] ∈ R𝑁×𝑅. 𝐹 is the constraint

function about {𝑈, 𝑉} and 𝐽 is the constraint about 𝑍. 𝛼 and
𝛽 are the corresponding positive coefficients. To encode the
spatial structure and discriminant class-based information
into sparse representations, we propose a constraint function
𝐽 according to the manifold learning and graph embedding
analysis. In NTF, the columns of the weighting matrix have a
one-to-one correspondence with the columns of the original
image matrix. Therefore, we add the discriminant constraint
to {z
𝑟
|
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where S𝑙
𝑖𝑗
denote the graphs with different properties and 𝜂

𝑙

are the corresponding coefficients. By deriving different S
𝑖𝑗
,

the graph embedding model could have different properties,
such as the neighborhood preserving property and the
discriminant property.

Now, we discuss the selection of S𝑙
𝑖𝑗
. The most commonly

used graph is the Laplacian graph, and S𝑙
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is calculated in form

of the heat kernel function as
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Here, S
𝑖𝑗
measures the similarity between a pair of vertices

and has neighborhood preserving property. To further incor-
porate the class-based discriminant information, we derive a
universal penalty graph [27], where the similarity matrix S𝑝
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is defined as
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between class 𝑙
𝑖
and the other classes. The purpose of the

penalty graph was to separate marginal samples between
different classes.

Now, the objective function of constrained NTF becomes
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By solving the generalized eigenvalue decomposition
problem, the graph embedding criterion in (11) can be calcu-
lated as
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And the final objective function of DNPNTF is
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where 𝜆 > 0 and 𝜎 > 0 to make sure (13) should be nonneg-
ative.
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3.2. Projected Gradient Method of DNPNTF. Themost popu-
lar approach to minimize NMF or NTF is the multiplicative
update method. However, it cannot ensure the convergence
of the constraint forms of NMF or NTF. In this paper, the
projected gradient method is used to solve DNPNTF.

The objective function of DNPNTF can be stated as

𝐷obj (A‖UVZ) = 𝐷 (A‖UVZ) + 𝜍𝐷 (Z) , (14)

where 𝜍 is a positive constant.The goal of (14) is to find {U,V}

and Z by solving the following problem:

min
U,V,Z

𝐷obj (A‖UVZ)

s.t. u
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𝑘,𝑗
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≥ 0 ∀𝑘, 𝑖, 𝑗.

(15)

To find the optimal solution, (15) is divided into three
subproblems: first, we fix V and Z and update U to arrive
at the conditional optimal value of the subminimization
problem; second, we fix U and Z and update V; last, we
fix U and V and update Z. Three functions are defined as
𝑓V,Z(U) = 𝐷obj(A‖UVZ), 𝑓U,Z(V) = 𝐷obj(A‖UVZ), and
𝑓U,V(Z) = 𝐷obj(A‖UVZ). The update rules are defined as

U(𝑡+1) = [U(𝑡) − 𝛼
𝑡
∇𝑓V,Z (U(𝑡))] ,

V(𝑡+1) = [V(𝑡) − 𝛼
𝑡
∇𝑓U,Z (V(𝑡))] ,
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𝑡
∇𝑓U,V (Z(𝑡))] .

(16)

Now the task is calculating ∇𝑓V,Z(U(𝑡)), ∇𝑓U,Z(V(𝑡)), and
∇𝑓U,V(Z(𝑡)).

3.2.1. The Calculation ofU andV. Firstly, we discuss the cal-
culation of∇𝑓V,Z(U(𝑡)) and∇𝑓U,Z(V(𝑡)).Theobjective function
could be written as
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is, (e𝑝)

𝑝
= 1 and (e𝑝)

𝑘 ̸=𝑝
= 0. According to Definition 1, for

any order tensors A
1
,A
2

∈ R𝑎1×𝑎2×⋅⋅⋅×𝑎𝑛 , B
1
,B
2

∈ R𝑏1×𝑏2×⋅⋅⋅×𝑏𝑛 ,
there is ⟨A

1
⊗B
1
,A
2
⊗B
2
⟩ = ⟨A

1
,A
2
⟩⟨B
1
,B
2
⟩.Then (19) could

be written as

𝜕𝑓

𝜕u𝑝
𝑠

=

𝑅

∑

𝑟=1

(⟨u
𝑟
, e𝑝⟩ ⟨k

𝑟
⊗ z
𝑟
, k
𝑠
⊗ z
𝑠
⟩)

− (

𝑚
1
,𝑚
2
,𝑁

∑

𝑘=1,𝑞=1,𝑖=1

𝐴
𝑘𝑞𝑖

(e𝑝)
𝑘
v𝑞
𝑠
z𝑖
𝑠
)

=

𝑅

∑

𝑟=1

(⟨u
𝑟
, e𝑝⟩ ⟨v

𝑟
⊗ z
𝑟
⟩ ⟨v
𝑠
⊗ z
𝑠
⟩)

− (

𝑚
2
,𝑁

∑

𝑞=1,𝑖=1

𝐴
𝑝𝑞𝑖

(e𝑝)
𝑝
v𝑞
𝑠
z𝑖
𝑠
+ ∑

𝑘 ̸=𝑝

𝐴
𝑘𝑞𝑖

(e𝑝)
𝑘
v𝑞
𝑠
z𝑖
𝑠
)

=

𝑅

∑

𝑟=1

(⟨u
𝑟
, e𝑝⟩ ⟨v

𝑟
, v
𝑠
⟩ ⟨z
𝑟
, z
𝑠
⟩)

− (

𝑚
2
,𝑁

∑

𝑞=1,𝑖=1

𝐴
𝑝𝑞𝑖

v𝑞
𝑠
z𝑖
𝑠
+ 0)

=

𝑅

∑

𝑟=1

((u𝑝
𝑟
(e𝑝)
𝑝

+ ∑

𝑘 ̸=𝑝

u𝑘
𝑟
(e𝑝)
𝑘
)⟨k
𝑟
, k
𝑠
⟩ ⟨z
𝑟
, z
𝑠
⟩)

−

𝑚
2
,𝑁

∑

𝑞=1,𝑖=1

𝐴
𝑝𝑞𝑖

v𝑞
𝑠
z𝑖
𝑠

=

𝑅

∑

𝑟=1

(u𝑝
𝑟
⟨k
𝑟
, k
𝑠
⟩ ⟨z
𝑟
, z
𝑠
⟩) −

𝑚
2
,𝑁

∑

𝑞=1,𝑖=1

𝐴
𝑝𝑞𝑖

v𝑞
𝑠
z𝑖
𝑠
.

(20)
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According to (16), the update rule for u𝑝
𝑠
is

u𝑝
𝑠

= u𝑝
𝑠

− 𝜇 (u𝑝
𝑠
)

𝜕𝑓

𝜕u𝑝
𝑠

= u𝑝
𝑠

− 𝜇 (u𝑝
𝑠
)(

𝑅

∑

𝑟=1

(u𝑝
𝑟
⟨v
𝑟
, k
𝑠
⟩ ⟨z
𝑟
, z
𝑠
⟩)

−

𝑚
2
,𝑁

∑

𝑞=1,𝑖=1

𝐴
𝑝𝑞𝑖

v𝑞
𝑠
z𝑖
𝑠
) .

(21)

To confirm the nonnegative of u𝑝
𝑠
, 𝜇(u𝑝
𝑠
) is set to be

𝜇 (u𝑝
𝑠
) =

u𝑝
𝑠

∑
𝑅

𝑟=1
(u𝑝
𝑟
⟨v
𝑟
,v
𝑠
⟩ ⟨z
𝑟
,z
𝑠
⟩)

. (22)

Then the update function is

u𝑝
𝑠

=

u𝑝
𝑠
(∑
𝑚
2
,𝑁

𝑞=1,𝑖=1
𝐴
𝑝𝑞𝑖

v𝑞
𝑠
z𝑖
𝑠
)

∑
𝑅

𝑟=1
(u𝑝
𝑟
⟨v
𝑟
,v
𝑠
⟩ ⟨z
𝑟
,z
𝑠
⟩)

=

u𝑝
𝑠
(v𝑇
𝑠
𝐴
𝑝;;
z
𝑠
)

∑
𝑅

𝑟=1
(u𝑝
𝑟
(v𝑇
𝑟
v
𝑠
) (z𝑇
𝑟
z
𝑠
))

=

u𝑝
𝑠
(k𝑇
𝑠
𝐴
𝑝;;
z
𝑠
)

(𝑈
𝑝;

((𝑉
𝑇k
𝑠
) ⊙ (𝑍

𝑇z
𝑠
)))

,

(23)

where 𝑈
𝑝;

∈ R1×𝑅 represents the 𝑝th row of 𝑈 = [u
1
, u
2
,

. . . , u
𝑅
], ⊙ is the matrix Hadamard product, 𝐴

𝑝;;
∈ R𝑚2×𝑁

represents the matrix which fixes the first module of 𝐴, and
traversals are the other two modules. It is defined as

(𝐴
𝑝;;

)
𝑞𝑖

= A
𝑝𝑞𝑖

, 1 ≤ ∀𝑞 ≤ 𝑚
2
, 1 ≤ ∀𝑖 ≤ 𝑁. (24)

Similarly, the update rule of the 𝑞th element of k
𝑠
(v𝑞
𝑠
, 1 ≤

𝑠 ≤ 𝑅, 1 ≤ 𝑞 ≤ 𝑚
2
) is

v𝑞
𝑠

=

v𝑞
𝑠
∑
𝑚
1
,𝑁

𝑝=1,𝑖=1
(𝐴
𝑝𝑞𝑖

u𝑝
𝑠
z𝑖
𝑠
)

∑
𝑅

𝑟=1
(v𝑞
𝑟
⟨u
𝑟
, u
𝑠
⟩ ⟨z
𝑟
, z
𝑠
⟩)

=

v𝑞
𝑠
(u𝑇
𝑠
𝐴
;𝑞;
z
𝑠
)

(𝑉
𝑞;

((𝑈
𝑇u
𝑠
) ⊙ (𝑍

𝑇z
𝑠
)))

,

(25)

where 𝑉
𝑞;

∈ R1×𝑅 represents the 𝑝th row of 𝑉 = [k
1
, k
2
,

. . . , k
𝑅
] ∈ R𝑚2×𝑅, ⊙ is the matrix Hadamard product, 𝐴

;𝑞;
∈

R𝑚1×𝑁 represents the matrix which fixes the second module
of𝐴, and traversals are the other twomodules. It is defined as

(𝐴
;𝑞;

)
𝑝𝑖

= A
𝑝𝑞𝑖

, 1 ≤ ∀𝑝 ≤ 𝑚
1
, 1 ≤ ∀𝑖 ≤ 𝑁. (26)

Now, k
𝑟
and u

𝑟
are calculated.

3.2.2. The Calculation of Z. Then we discuss the calculation
of ∇𝑓U,V(Z(𝑡)). The differential of 𝑓 along z

𝑠
(∀𝑠, 1 ≤ 𝑠 ≤ 𝑅) is

𝑑 (𝑓z
𝑠

) = ⟨A −

𝑅

∑

𝑟=1

u
𝑟
⊗ k
𝑟
⊗ z
𝑟
, −𝑑 (z

𝑠
) ⊗ u
𝑠
⊗ v
𝑠
⟩

+

1

2

𝑑 (𝜆z𝑇
𝑠
𝐿z
𝑠
) −

1

2

𝑑 (𝜎z𝑇
𝑠
𝐿
𝑝z
𝑠
)

= ⟨

𝑅

∑

𝑟=1

u
𝑟
⊗ v
𝑟
⊗ z
𝑟
, 𝑑 (z
𝑠
) ⊗ u
𝑠
⊗ v
𝑠
⟩

− ⟨A, 𝑑 (z
𝑠
) ⊗ u
𝑠
⊗ k
𝑠
⟩ + 𝑑 (

1

2

𝜆z𝑇
𝑠
(𝐷 − 𝑆) z

𝑠
)

− 𝑑(

1

2

𝜎z𝑇
𝑠
(𝐷
𝑝

− 𝑆
𝑝

) z
𝑠
) .

(27)

For (𝜆z𝑇
𝑠
(𝐷 − 𝑆)z

𝑠
)/2, the partial differential for z𝑖

𝑠
is

𝜕 ((1/2) 𝜆z𝑇
𝑠
(𝐷 − 𝑆) z

𝑠
)

𝜕z𝑖
𝑠

=

𝜕 (z
𝑠
)

𝜕z𝑖
𝑠

𝜕 ((1/2) 𝜆z𝑇
𝑠
(𝐷 − 𝑆) z

𝑠
)

𝜕z
𝑠

= (e𝑖)
𝑇

𝜆 (𝐷 − 𝑆) z
𝑠
,

(28)

where the 𝑖th element in e𝑖 ∈ R𝑁 is 1 and others are 0.That is,
(e𝑖)
𝑖
= 1 and (e𝑖)

𝑘 ̸=𝑖
= 0. Then the partial differential for z𝑖

𝑠
is

𝜕𝑓

𝜕z𝑖
𝑠

= ⟨

𝑅

∑

𝑟=1

u
𝑟
⊗ k
𝑟
⊗ z
𝑟
, u
𝑠
⊗ k
𝑠
⊗ e𝑖⟩

− ⟨A,u
𝑠
⊗ k
𝑠
⊗ e𝑖⟩ + 𝜆(e𝑖)

𝑇

(𝐷 − 𝑆) z
𝑠

− 𝜎(e𝑖)
𝑇

(𝐷
𝑝

− 𝑆
𝑝

) z
𝑠

=

𝑅

∑

𝑟=1

⟨u
𝑟
,u
𝑠
⟩ ⟨v
𝑟
, v
𝑠
⟩ z𝑖
𝑟
−

𝑚
1
,𝑚
2

∑

𝑝=1,𝑞=1

𝐴
𝑝𝑞𝑖

u𝑝
𝑠
v𝑞
𝑠

+ (𝜆𝐷
𝑖𝑖
z𝑖
𝑠
− 𝜆

𝑁

∑

𝑘=1

𝑆
𝑖𝑘
z𝑘
𝑠
) − (𝜎𝐷

𝑝

𝑖𝑖
z𝑖
𝑠
− 𝜎

𝑁

∑

𝑘=1

𝑆
𝑝

𝑖𝑘
z𝑘
𝑠
) .

(29)

According to (16), the update rule for z𝑖
𝑠
is

z𝑖
𝑠
= z𝑖
𝑠
− 𝜇 (z𝑖

𝑠
)

𝜕𝑓

𝜕z𝑖
𝑠

= z𝑖
𝑠
− 𝜇 (z𝑖

𝑠
)(

𝑅

∑

𝑟=1

⟨u
𝑟
, u
𝑠
⟩ ⟨v
𝑟
, k
𝑠
⟩ z𝑖
𝑟
+ 𝜆𝐷
𝑖𝑖
z𝑖
𝑠

+ 𝜎

𝑁

∑

𝑘=1

𝑆
𝑝

𝑖𝑘
z𝑘
𝑠
−

𝑚
1
,𝑚
2

∑

𝑝=1,𝑞=1

𝐴
𝑝𝑞𝑖

u𝑝
𝑠
v𝑞
𝑠

−𝜆

𝑁

∑

𝑘=1

𝑆
𝑖𝑘
z𝑘
𝑠
− 𝜎𝐷
𝑝

𝑖𝑖
z𝑖
𝑠
) .

(30)
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The update step 𝜇(z𝑖
𝑠
) is set as

𝜇 (z𝑖
𝑠
) =

z𝑖
𝑠

(∑
𝑅

𝑟=1
⟨u
𝑟
, u
𝑠
⟩ ⟨v
𝑟
, v
𝑠
⟩ z𝑖
𝑟
+ 𝜆𝐷
𝑖𝑖
z𝑖
𝑠
+ 𝜎∑

𝑁

𝑘=1
𝑆
𝑝

𝑖𝑘
z𝑘
𝑠
)

.

(31)

And the final update rule of z𝑖
𝑠
is

z𝑖
𝑠
= z𝑖
𝑠

∑
𝑚
1
,𝑚
2

𝑝=1,𝑞=1
𝐴
𝑝𝑞𝑖

u𝑝
𝑠
v𝑞
𝑠
+ 𝜆∑

𝑁

𝑘=1
𝑆
𝑖𝑘
z𝑘
𝑠
+ 𝜎𝐷
𝑝

𝑖𝑖
z𝑖
𝑠

∑
𝑅

𝑟=1
⟨u
𝑟
, u
𝑠
⟩ ⟨v
𝑟
, v
𝑠
⟩ z𝑖
𝑟
+ 𝜆𝐷
𝑖𝑖
z𝑖
𝑠
+ 𝜎∑

𝑁

𝑘=1
𝑆
𝑝

𝑖𝑘
z𝑘
𝑠

= z𝑖
𝑠

u𝑇
𝑠
𝐴
;;𝑖
v
𝑠
+ 𝜆𝑆
𝑖;
z
𝑠
+ 𝜎𝐷
𝑝

𝑖𝑖
z𝑖
𝑠

𝑍
𝑖;
((𝑈
𝑇us) ⊙ (𝑉

𝑇ks)) + 𝜆𝐷
𝑖𝑖
z𝑖
𝑠
+ 𝜎𝜆𝑆

𝑝

𝑖;
z
𝑠

,

(32)

where 𝑍
𝑖;

∈ R1×𝑅 represents the 𝑖th row of 𝑍 = [z
1
, z
2
,

. . . , z
𝑅
]; 𝑆
𝑖;

∈ R1×𝑁 and 𝑆
𝑝

𝑖;
∈ R1×𝑁 represent the 𝑖th row of 𝑆

and 𝑆
𝑝, respectively; ⊙ is Hadamard product, 𝐴

;;𝑖
∈ R𝑚1×𝑚2 ,

and is defined as

(𝐴
;;𝑖
)
𝑝𝑞

= 𝐴
𝑝𝑞𝑖

, 1 ≤ ∀𝑝 ≤ 𝑚
1
, 1 ≤ ∀𝑞 ≤ 𝑚

2
. (33)

Now u
𝑟
, v
𝑟
, and z

𝑟
in the objective function are all cal-

culated.

4. Extreme Learning Machine

ELM is proposed by Huang et al. [18] for SLFNs. Unlike
the traditional feedforward neural network training meth-
ods, such as the gradient-descent method, the standard
optimization method, and the least-square based method,
ELM need not tune the hidden layer of SLFNs which may
cause learning complicated and inefficient. It could reach
the smallest training error and have better generalization
performance. The learning speed of ELM is fast, and the
parameters have not to be tuned manually. In our proposed
algorithm, the extracted features by DNPNTF are fed into
ELM for classification.

Given a training set X = {(x
𝑖
, 𝑡
𝑖
) | x
𝑖
∈ 𝑅
𝑛

, 𝑡
𝑖

∈ 𝑅
𝑛

, 𝑖 =

1, 2, . . . , 𝑁}, where x
𝑖
is the 𝑛 × 1 input feature vector and 𝑡

𝑖
is

a𝑚×1 target vector. ELMwith𝐾hidden nodes and activation
function 𝑔(𝑥) is modeled as

𝐾

∑

𝑖=1

𝛽
𝑖
𝑔 (x
𝑗
) =

𝐾

∑

𝑖=1

𝛽
𝑖
𝑔 (𝑤
𝑖
⋅ x
𝑗
+ 𝑏
𝑖
) = 𝑜
𝑗
, 𝑗 = 1, . . . , 𝑁,

(34)

where 𝑤
𝑖

= (𝑤
𝑖1
, 𝑤
𝑖2
, . . . , 𝑤

𝑖𝑑
)
𝑇 represents the input weight,

which is the 𝑖th neuron in the hidden layer and the input layer;
𝛽
𝑖
= (𝛽
𝑖1
, 𝛽
𝑖2
, . . . , 𝛽

𝑖𝑚
)
𝑇 is the weight vector between the 𝑖th

hidden neuron and the output layer; 𝑜
𝑗
is the target vector of

the 𝑗th input data. In training step, ELM aims to approximate
𝑁 training samples with zero error, which means ∑

𝑁

𝑗=1
‖𝑜
𝑗
−

𝑡
𝑗
‖ = 0. Then there exist 𝛽

𝑖
, 𝑤
𝑗
, and 𝑏

𝑗
satisfying that

𝐾

∑

𝑖=1

𝛽
𝑖
𝑔 (𝑤
𝑖
⋅ x
𝑗
+ 𝑏
𝑖
) = 𝑡
𝑗
, 𝑗 = 1, . . . , 𝑁. (35)

Equation (35) can be reformulated compactly as

𝐻𝛽 = 𝑇, (36)

where

𝐻(𝑤
1
, . . . , 𝑤

𝐾
, 𝑏
1
, . . . , 𝑏

𝐾
, 𝑥
1
, . . . , 𝑥

𝑁
)

= (

𝑔 (𝑤
1
⋅ 𝑥
1
+ 𝑏
1
) ⋅ ⋅ ⋅ 𝑔 (𝑤

𝐾
⋅ 𝑥
1
+ 𝑏
𝐾
)

.

.

. d
.
.
.

𝑔 (𝑤
1
⋅ 𝑥
𝑁

+ 𝑏
1
) ⋅ ⋅ ⋅ 𝑔 (𝑤

𝐾
⋅ 𝑥
𝑁

+ 𝑏
𝐾
)

)

𝑁×𝐾

,

𝛽 = (

𝛽
𝑇

1

.

.

.

𝛽
𝑇

𝐾

)

𝐾×𝑚

, 𝑇 = (

𝑡
𝑇

1

.

.

.

𝑡
𝑇

𝑁

)

𝑁×𝑚

.

(37)

𝐻 is called the hidden layer output matrix of the neural
network, and the 𝑖th column of 𝐻 is the 𝑖th hidden neuron
output with respect to inputs 𝑥

1
, 𝑥
2
, . . . , 𝑥

𝑁
. It is proved by

Huang et al. [18] that weights and biases need not be adjusted
and can be arbitrarily given. Therefore, the output weights
could be determined by finding the least-square solution ̂

𝛽

as

𝐻𝛽 = 𝑇 ⇒
̂
𝛽 = 𝐻

†

𝑇, (38)

where𝐻
† is theMoore-Penrose generalized inverse of matrix

𝐻. Furthermore, the smallest training error can be obtained
by ̂

𝛽 as





𝐻

̂
𝛽 − 𝑇







=






𝐻𝐻
†

𝑇 − 𝑇







= min
𝛽





𝐻𝛽 − 𝑇





. (39)

As analyzed by Huang, ELM could obtain a good general-
ization performance with a dramatically increased learning
speed by solving (39).

5. Experiments

In this section, we apply DNPNTF via ELM to facial
expression recognition. We compare DNPNTF with NMF
[7], DNMF [11], and NTF [9] and give the experimental
results by employing ELM, NN, SVM [16], and SRC [17]. Two
facial expression databases are used: the JAFFE database [31]
and the Cohn-Kanade database [32]. Raw facial images are
cropped according to the position of eyes and normalized to
32 × 32 pixels. Figure 1 shows an example of the original face
image and the corresponding cropped image. According to
the rank-one tensor theory, gray level images are encoded in
tensor space.

Since the results of ELM may vary during each different
execution, we repeat the execution for 5 times and take the
average value as the final result. It is proved by theory analysis
and experiments that the classification performance of ELM
is affected by the hidden activation function and the number
of hidden nodes [23]. However, in this paper we just focus
on the application of ELM to facial expression recognition.
The activation function used in our algorithm is a simple
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Figure 1: Illustration of the preprocess for original images.

sigmoidal function. The number of hidden nodes is set to be
the same as the number of facial expression classes (e.g., 7 for
the JAFFE database and 6 for the Cohn-Kanade database).
For SVM, the radial basis function (RBF) is used, which
is exp(−𝛾‖x

𝑖
− x
𝑗
‖
2

) ⋅ 𝛾 that is set to be 3 as an empirical
value. For SRC, “Homotopy” algorithm is used to solve the
minimization of ℓ

1
norm constraint.

5.1. Experiments on JAFFE Database. The JAFFE database
[31] is an expression database which contains 213 static facial
images captured from 10 Japanese females. Each person poses
2 to 4 examples for each of the 6 prototypic expressions
(anger, disgust, fear, happiness, sadness, and surprise) plus
the natural face. To evaluate the algorithms, we randomly
partition all images into 10 groups, with roughly 70 samples
in each group.We take any 9 groups for training and calculate
the recognition rates with the remaining one.We repeat it for
all the 10 possible choices. Finally, the average result over 10
times’ testing was taken.

The average recognition rates of different feature extrac-
tion algorithms are shown in Figure 2, where the vertical
axis represents the correct recognition rate in percentage and
the horizontal axis represents the corresponding dimensions
(from 1 to 120). Here, only the NN classifier is used. In the
lower range of dimensions, the recognition rates of DNPNTF
are similar to other algorithms. This is because DNPNTF
extracts the parts-based sparse representations, and only a
few features could be generated for recognition in the low
range of dimensions. In the higher range of dimensions,
DNPNTF outperforms the others. With the increase of the
extracted parts-based features, DNPNTF could achieve good
recognition performance. Since different constraints were
added, the improved versions of NMF, including DNMF and
NTF, outperform the conventional NMF.

The top recognition rates of different algorithms with
corresponding dimensions are illustrated in Table 1. NMF
achieves the highest rate at a low dimension, while DNMF
achieves the highest rate at a high dimension. Although
more dimensions are needed, DNPNTF achieves the highest
recognition rate compared with others. This is because the
constraints about manifold structure and discriminant infor-
mation are considered, which are critical for classification.

Figure 3 shows the basis images obtained on the JAFFE
database by NMF, NTF, andDNPNTF. Based on the principle
of NMF, the face images are represented by combining
multiple basis images with addition only, and the basis images
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Figure 2:The recognition rate versus dimension curves achieved on
the JAFFE database.

Table 1: The top recognition rate and the corresponding dimension
achieved on the JAFFE database.

DNPNTF NMF DNMF NTF
Recognition rates (%) 90.71 87.43 89.33 88.91
Dimensions 98 16 66 101

are expected to represent facial parts. In this database, the
basis images calculated by NMF are not sparse. NTF and
DNPNTF which execute in the tensor space could generate
parts-based sparse representations. Since more constraints
were adopted, DNPNTF generate sparser basis images which
reflect distinct features for recognition.

Then we give the experiments to prove the effectiveness
of DNPNTF via ELM. The average recognition rates of
DNPNTF with ELM, NN, SVM, and SRC are given in
Figure 4, where the vertical axis represents the correct recog-
nition rate in percentage and the horizontal axis represents
the corresponding dimensions (from 1 to 120). ELM and SRC
achieve better recognition performance compared with NN
and SVM, andELMachieves the highest recognition rate.The
top recognition rates with the corresponding dimensions are
given in Table 2.

5.2. Experiments on Cohn-Kanade Database. The Cohn-
Kanade database [32] consists of a large amount of image
sequences starting from natural face and ending with the
peak of the corresponding expression. 104 subjects with
different ages, genders, and races are instructed to pose
a series of 23 facial displays, including the 6 prototypic
expressions. In our experiments, for every image sequence,
we take 2 to 8 continuous frames near the peak expression as
the static samples. We use the face images of all subjects. We
partition the subject to 3 exclusive groups, and in each group,
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(a) NMF (b) NTF

(c) DNPNTF

Figure 3: Basis images obtained on the JAFFE database.

Table 2:The top recognition rate of different classifiers achieved on
the JAFFE database.

ELM NN SRC SVM
Recognition rates (%) 94.39 90.71 93.54 91.03
Dimensions 55 98 63 101

for each of the prototypic expression, we select 100 samples;
that is, there are 600 samples in each group and the size of the
total set is 1800. During the experiment, we adopt the leave-
one-group-out strategy and 3-fold cross-validation: each time
two groups are taken as training set and the remaining group
is left for testing. This procedure is repeated for 3 times.

The average recognition rates of different algorithms on
the Cohn-Kanade database are shown in Figure 5, where the
vertical axis represents the correct recognition rate in per-
centage and the horizontal axis represents the corresponding
dimensions (from 1 to 120). Here, only the NN classifier is
used. Table 3 shows the top recognition rates with the corre-
sponding dimensions. The recognition rates obtained on the
Cohn-Kanade database are lower than those obtained on the
JAFFE database. It can be explained that the experiments on

Table 3:The top recognition rate and the corresponding dimensions
achieved on the Cohn-Kanade database.

DNPNTF NMF DNMF NTF
Recognition rates (%) 63.61 58.17 58.83 59.72
Dimensions 101 76 26 120

the Cohn-Kanade database are person-independent, which
are more difficult than the person-dependent experiments
on the JAFFE database. From Figure 5, we can see that the
performance of DNPNTF is superior to others with nearly all
dimensions. Its recognition rates improve with the increase
of dimensions.

Lastly, we give the experiments about different classifiers
on the Cohn-Kanade database. The average recognition rates
of DNPNTF via ELM, NN, SVM, and SRC are shown in
Figure 6, and the top recognition rates are given in Table 4.
SVM and SRC achieve better performance compared with
NN. ELM achieves the best recognition accuracy among all
tested algorithms on almost all dimensions. It means ELM
could use the information contained in extracted features
better than other classifiers.
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Figure 4:The recognition rate versus dimension curves ofDNPNTF
by using different classifiers on the JAFFE database.
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Figure 5:The recognition rate versus dimension curves achieved on
the Cohn-Kanade database.

6. Conclusions

In this paper, a novel DNPNTF algorithm with the appli-
cation to facial expression recognition was proposed, which
adopts ELM as the classifier. To incorporate the spatial infor-
mation and the discriminant class information, a discrimi-
nant constraint is added to the objective function according
to the manifold learning and graph embedding theory. To
guarantee the convergence, the project gradient method is
used for optimization. Theoretical analysis and experimental
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Figure 6:The recognition rate versus dimension curves ofDNPNTF
by using different classifiers on the Cohn-Kanade database.

Table 4: The top recognition rate and the corresponding dimen-
sions achieved on the Cohn-Kanade database.

ELM NN SRC SVM
Recognition rates (%) 86.00 63.61 73.00 72.06
Dimensions 51 101 116 106

results demonstrate that DNPNTF could achieve better per-
formance compared with NTF, NMF, and its variant. Then
the discriminant features generated by DNPNTF are fed
into ELM to learn an optimal model for recognition. In our
experiments, DNPNTF via ELM achieves higher recognition
rate compared with NN, SVM, and SRC.
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