
Author: Shan Lu (slu5)

For better reading experience on this document, please click here to oepn a rich-formatted PDF file.

typedef struct
{
 int tcpport; // listening port no
 int listen_fd; // socket file descriptor
 int numStations;
 fd_set master;
 int fdmax;
 StationInfo *stations;
 int fdCapacity;
 int fdCount;
 int *clients_control_fd;
 pthread_mutex_t fdlock;
} ServerInfo;

typedef struct
{
 int stationID;
 FILE *fp; // mp3 file that station is playing
 char *filename;
 int numClients;
 ClientInfo *head; // linked-list
 pthread_mutex_t lock;
} StationInfo;

typedef struct ClientInfo ClientInfo;
struct ClientInfo{
 ClientInfo *next;
 char hostname[INET6_ADDRSTRLEN];
 int udpport;
 struct sockaddr dest_addr;
 socklen_t dest_addrlen;
 int control_fd;
 int listener_fd;
};

Snowcast README

Data Structures

http://baizhima.github.io/documents/cs168/snowcast_readme.pdf

In this project, I defined three structures to store and maintain data from server and clients in a systematic
manner.

ServerInfo stores all the data that can be accessed globally. Concretely, StationInfo

contains runtime allocated array of music stations of size numStations . Variables
master,fdmax,fdCapacity,fdCount are used to bookkeep clients' control program's sockets

data(which seems redundant at first glance as we will save them into ClientInfo), which will be
used for system call
function select(int, fd_set *,fd_set *,fd_set *,struct timeval *) , while
clients_control_fd is a dynamically sized array storing those file descriptors.

StationInfo saves all the information regarding a given music channel. Most of the variable
names are self-explanatory such as stationID or numClients . Variable head serves as the
head pointer of a linked-list of clients that are listening to current station. The occurrence of
pthread_mutex_t lock will be discussed in next section.

ClientInfo includes all data that a server requires to communicate with a specific client. The
ClientInfo *next , as you may have figured out, points to next ClientInfo structure.

Though both controller and listener's file descriptor have been created, we still need the dest_addr

and dest_addrlen as arguments of function sendto() , which is called when sending data
under UDP.

According to the project writeup, we need to build a radio station rather than a mp3 player. In other words,
clients connecting to same channel must hear the same part of a song. This demand immediately gets my
mind into shape that a multi-threaded model is required. In this implementation, one music station occupies
one single thread and takes fully charge of all clients that connect to it. Since the overall number of clients is
uncertain and may change frequently due to clients' switches, a linked list works better than a dynamic
array or anything else. In this way, each thread could iteratre through all its clients and send the same UDP
packet almost the same time.

At first I thought one-thread-per-station design is pretty straightforward and mutexes are required only if
stations add a client or one client switches to another music station. However, this assumption was broken
when more than one client connecting to the server with one client has not set its station. Under this
circumstance, the server's main thread will wait until the client completed setting the station.

So we must split threads handling those clients that have sent hello but not set their preferred stations yet.
Once stationNumber has been picked, the ClientInfo could fill out its attributes and attach itself
to one of the stations on server. And client's right of control is transferred to that specific station thread

Design

Thread, thread, thread!

automatically.

Here is the formula to compute the total number of threads active in a server:

totalThreads = 1(main) + numPendingClients(have not set station) + numStations

Yes there are bugs. Most of them occur when one of the stations has sent hello but not set its
stationNumber . Sometimes it will interfere the switch station process of newcoming clients.

Beej's Network Programming Guide

Bugs

Reference

http://beej.us/guide/bgnet/output/print/bgnet_A4_2.pdf

